PUBLICATIONS

39. O. Słowik, A. Sawicki, Calculable lower bounds on efficiency of universal sets of quantum gates, arXiv:2201.11774 (2022)

37. A. Sawicki, L. Mattioli, Z. Zimboras, Universality verification for a set of quantum gates, Phys. Rev. A 105, 052602, (2022)

38. M.Oszmaniec, A. Sawicki and M. Horodecki, Epsilon-nets, unitary designs and random quantum circuits, IEEE Transactions on Information Theory, vol. 68, no. 2, pp. 989-1015, (2022)

36. L. Mattioli, A. Sawicki, On the universality and membership problems for quantum gates, arxiv, (2021)

35. M. Białous, P. Dulian, A. Sawicki, and L. Sirko, Delay-time distribution in the scattering of short Gaussian pulses in microwave networks, Phys. Rev. E 104, 024223, (2021)

34. M. Ławniczak, A. Sawicki, M. Białous, L. Sirko, Isoscattering strings of concatenating graphs and networks, Sci Rep 11, 1575 (2021)

33. T. Maciążek, A. Sawicki and O. Słowik, Designing locally maximally entangled quantum states with arbitrary local symmetries, Quantum 5, 450 (2021)

32. O. Słowik, M. Hebenstreit, B. Kraus, and A. Sawicki, A link between symmetries of critical states and the structure of SLOCC classes in multipartite systems, Quantum 4 300, (2020)

31. T. Maciążek, A. Sawicki, D. Gross, A. Lopes, C. Schilling, Implications of pinned occupation numbers for natural orbital expansions. II: Rigorous derivation and extension to non-fermionic systems, New J. Phys. 22 023002, (2020)

30. C. Schilling, C. Benavides-Riveros, A. Lopes, T. Maciążek, A. Sawicki, Implications of pinned occupation numbers for natural orbital expansions. I: Generalizing the concept of active spaces, New J. Phys. 22 023001, (2020)

29. T. Maciążek, A. Sawicki, Non-abelian quantum statistics on graphs, Commun. Math. Phys. (2019).

28. A. Swicki., T. Maciążek, M. Oszmaniec. K. Karnas, K. Kowalczyk-Murynka, M. Kuś, Multipartite Quantum Correlations: Symplectic and Algebraic Geometry Approach, Reports on Mathematical Physics, i. 1, vol. 82, p. 81-111, (2018)

27. T. Maciążek, A. Sawicki,  Asymptotic properties of entanglement polytopes for large number of qubits, J. Phys. A: Math. Theor, 51, 7, 07LT01, (2018)

26. K. Karnas, A. Sawicki, When is a product of finite order qubit gates of infinite order?, J. Phys. A: Math. Theor, 51, 7, 075305, (2018)

25. A. Sawicki, K. Karnas, Criteria for universality of quantum gates, Phys. Rev. A 95, 062303 (2017)

24. T. Maciążek, A. Sawicki Homology groups for particles on one-connected graphs, J. Math. Phys., 58, 062103, (2017)

23. A. Sawicki, K. Karnas, Universality of single-qudit gatesAnn. Henri Poincaré, 11, vol. 18, 3515–3552, (2017).

22. T. Maciążek, A. Sawicki, Torsion in Cohomology groups of configuration spaces, Acta Physica Polonica, 137, vol. 6, 1695-1698, (2017)

21. Adam Sawicki, Universality of Beamsplitters, Quantum Information and Computation, Vol. 16, No. 3&4 (2016) 0291–0312 (archive)

20. Tomasz Maciążek, Adam Sawicki, Critical points of the linear entropy for pure L-qubit states, J. Phys. A: Math. Theor. 48 045305 (1/2015) (archive)

19. Adam Sawicki, Topology of graph configuration spaces and quantum statistics, PhD thesis, Bristol 2014

18. Michał Oszmaniec, Piotr Suwara and Adam Sawicki, Geometry and topology of CC and CQ states, J. Math. Phys. 55, 062204 (2014)

17. J.M. Harrison, J.P. Keating, J.M. Robbins, A. Sawicki, n-Particle Quantum Statistics on Graphs, Commun. Math. Phys. 330, 1293–1326 (2014)

16. Adam Sawicki, Michał Oszmaniec, Marek Kuś, Convexity of momentum map, Morse index, and quantum entanglement, Reviews in Mathematical Physics, 26, 1450004, (2014) (archive)

15. M. Ławniczak, A. Sawicki, S. Bauch, M. Kuś, L. Sirko, Resonances and poles in isoscattering microwave networks and graphs, Reviews in Mathematical Physics, 26, 1450004, (2014)(archive)

14. M. Ławniczak, S. Bauch, A. Sawicki, M. Kuś, L. Sirko, Isoscattering Microwave Networks – The Role of the Boundary Conditions, Proceedings of the 6th Workshop on Quantum Chaos and Localisation Phenomena, Acta Phys. Pol. A 124, 1078-1081 (2013)

13. Tomasz Maciążek, Michał Oszmaniec, and Adam Sawicki, How many invariant polynomials are needed to decide local unitary equivalence of qubit states? J. Math. Phys. 54, 092201 (2013)

12. O Hul, M Ławniczak, S Bauch, A Sawicki, M Kuś, L Sirko, Are Scattering Properties of Networks Uniquely Connected to Their Shapes? Low-Dimensional Functional Materials NATO Science for Peace and Security Series B: Physics and Biophysics 2013, pp 127-137

11. A Sawicki, V V Tsanov, A link between quantum entanglement, secant varieties and sphericity, J. Math. Phys. 54, 022202 (2013) (archive)

10. A. Huckleberry, M. Kuś, A. Sawicki, Bipartite entanglement, spherical actions, and geometry of local unitary orbits, J. Math. Phys. 54, 022202 (2013) (archive)

9. A Sawicki, M Walter, M Kuś, When is a pure state of three qubits determined by its single-particle reduced density matrices? J. Phys. A: Math. Theor. 46 055304 (2013) (archive)

8. A Sawicki, Discrete Morse functions for graph configuration spaces, J. Phys. A: Math. Theor. 45 505202 (2012)

6. O. Hul, M. Ławniczak, S. Bauch, A. Sawicki, M Kuś, L. Sirko, Are Scattering Properties of Graphs Uniquely Connected to Their Shapes? Phys. Rev. Lett. 109, 040402 (2012) (archive)

5. Adam Sawicki, Marek Kuś, Geometry of the local equivalence of states, J. Phys. A: Math. Theor. 44 495301 (2011) (archive)

4. R. Band, A. Sawicki, U Smilansky, Note on the Role of Symmetry in Scattering from Isospectral Graphs and Drums, Proceedings of the 5th Workshop on Quantum Chaos and Localisation Phenomena, Acta Phys. Pol. A Vol. 120 no. 5 (2011)

3. Adam Sawicki, Alan Huckleberry, Marek Kuś, Symplectic Geometry of Entanglement, Comm. Math. Phys. 305, 441-468 (2011) (archive)

2. Adam Sawicki, Marek Kuś, Classical nonintegrability of a quantum chaotic SU(3) Hamiltonian system, Physica D: Nonlinear Phenomena 239, 719–726 (2010) (archive)

1. R. Band, A. Sawicki, U. Smilansky, Scattering from isospectral quantum graphs, J. Phys. A: Math. Theor. 43 (2010) 415201